Exercise 13

Convert each of the following Fredholm integral equation in 9-16 to an equivalent BVP:

$$
u(x)=e^{3 x}+\int_{0}^{1} K(x, t) u(t) d t, K(x, t)= \begin{cases}t, & \text { for } 0 \leq t \leq x \\ x, & \text { for } x \leq t \leq 1\end{cases}
$$

Solution

Substitute the given kernel $K(x, t)$ into the integral.

$$
\begin{equation*}
u(x)=e^{3 x}+\int_{0}^{x} t u(t) d t+\int_{x}^{1} x u(t) d t \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=3 e^{3 x}+\frac{d}{d x} \int_{0}^{x} t u(t) d t+\frac{d}{d x} \int_{x}^{1} x u(t) d t
$$

Apply the Leibnitz rule to differentiate the second integral.

$$
\begin{align*}
& =3 e^{3 x}+x u(x)+\int_{x}^{1} \frac{\partial}{\partial x} x u(t) d t+x u(1) \cdot 0-x u(x) \cdot 1 \\
& =3 e^{3 x}+\int_{x}^{1} u(t) d t \\
& =3 e^{3 x}-\int_{1}^{x} u(t) d t \tag{2}
\end{align*}
$$

Differentiate both sides with respect to x once more.

$$
\begin{aligned}
u^{\prime \prime}(x) & =9 e^{3 x}-\frac{d}{d x} \int_{1}^{x} u(t) d t \\
& =9 e^{3 x}-u(x)
\end{aligned}
$$

The boundary conditions are found by setting $x=0$ and $x=1$ in equations (1) and (2), respectively.

$$
\begin{aligned}
& u(0)=e^{0}+\int_{0}^{0} t u(t) d t+\int_{0}^{1}(0) u(t) d t=1 \\
& u^{\prime}(1)=3 e^{3}-\int_{1}^{1} u(t) d t=3 e^{3}
\end{aligned}
$$

Therefore, the equivalent BVP is

$$
u^{\prime \prime}+u=9 e^{3 x}, u(0)=1, u^{\prime}(1)=3 e^{3} .
$$

